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IMAGE PROCESSING THROUGH REACTION 
COMBINED WITH NONLINEAR DIFFUSION 

G.-H. COTTET AND L. GERMAIN 

ABSTRACT. We propose a method based on nonlinear diffusion and reaction for 
edge detection and contrast enhancement in image processing. We prove that 
the mathematical model is well posed and show numerically that the processed 
image can be observed on the asymptotic state of its solution. We illustrate the 
methods on test images and show on medical images how it can help to draw 
contours and detect one-dimensional coherent signals. 

1. INTRODUCTION 

The goal of this paper is to present new techniques based on partial differen- 
tial equations for image processing. PDEs have been known for a long time as a 
useful tool in image processing, and pure diffusion equations are indeed under- 
lying classical filtering techniques. The challenging aspect of image processing 
is to design methods which can filter selectively the noise without affecting the 
interesting features of the original image. In [7], Perona and Malik proposed 
a method toward that goal. Their idea is to penalize the diffusion where the 
gradients of the signal are large. This is desirable in order to keep the edges of 
the signal, but obviously, if the noise is to be removed, that principle must be 
modified. Later Alvarez et al. [1] derived a method based upon the same prin- 
ciple which overcomes that difficulty and is mathematically well posed. They 
show that by properly choosing the time of integration, their method is able to 
remove a large amount of noise without introducing a significant smearing at 
the edges of the signal. The choice of this integration time can be made in terms 
of the minimal scale which is to be kept in the original image. For a different 
mathematical approach, also based on partial differential equations, we refer to 
[6]. 

The method we propose here is different in spirit. It is based on reaction 
diffusion equations. The idea behind these models is to combine diffusion for 
noise filtering and reaction for contrast enhancement. On small time scales 
simple reaction diffusion models indeed perform well. They average out the 
noise on a scale which is related to the diffusion coefficient; through the reaction 
term, the result is then compared to a threshold and either amplified or damped 
out. However, for longer times these interesting features disappear: the edges of 
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the signal start shrinking with a velocity proportional to their mean curvature, 
and the image eventually completely vanishes. 

Our goal was to derive a method where the processed image could be ob- 
served on the asymptotic state of the solution of the mathematical model. We 
believe that this goal is rather natural in view of the importance of attractors 
in biological systems. One possible direction would be to replace scalar equa- 
tions by systems of reaction diffusion equations. These models are more likely 
to produce nontrivial equilibrium states which could be our desired asymp- 
totic images. Some results exist in specific situations (see [8]). However, if 
one wishes to stay within the mathematically simpler framework of single re- 
action diffusion equations, then some nonlinearity must be introduced in the 
diffusion. This approach is natural to some extent, in view of some formal 
links which exist between reaction-diffusion equations and neural networks (see 
[3]). In this reference we trivially observe that neural networks whose transi- 
tions are governed by translation-invariant connections can be considered as 
space-time discretization of reaction-diffusion equations. The diffusion scale is, 
for obvious reasons, related to the range of the connections, while the shape 
of the reaction term is, up to a linear correction, given by the gain function 
which correlates input and output of a neuron. It is worth pointing out that 
in this analogy the uniqueness of an invariant measure (in a statistical physics 
framework) attached to the neural network, which is the uniform measure in 
the case of a synaptic matrix invariant with respect to translation, reflects the 
fact that the asymptotic state for a reaction diffusion is constant when the diffu- 
sion is isotropic. However, in real life, neural networks learn at the same time 
they process information; as a result, during a transient stage, synaptic weights 
move from a uniform distribution into one which is strongly affected by the 
correlations of the activities of the neurons. In other words, neurons which 
have experienced correlations in their output during a transient stage, become 
strongly connected. If one wishes to pursue the analogy with reaction-diffusion 
in this case, then nonlinearities have somehow to enter in the diffusion term. 

For the construction of the kind of nonlinearity we have in mind, we used, 
as in [1], the fact that it is very important in image processing to have a good 
resolution of the edges. More specifically, in many applications in medical 
imaging it is desirable to be able to detect one-dimensional objects, which would 
be considered as noisy signals if isotropic diffusion were used. A natural idea 
to build diffusion operators which could overcome this difficulty is to determine 
at each point of the image the gradient of the signal and to diffuse only on the 
orthogonal direction. Obviously, this program cannot be strictly implemented, 
since it would lead to a diffusion which would vanish everywhere. So we propose 
instead to compute the direction of diffusion through a regularized version of 
the signal; this gives the following diffusion operator: 

ALu = div([A6(u)][Vu]), 

where A,(u) denotes the orthogonal projection onto the direction orthogonal to 
the gradient of a regularization u6 of u. This actually amounts to calculating 
the derivatives of u on two different scales: one to compute Vu and one for the 
diffusion matrix. This diffusion term can also be interpreted as follows: it will 
be small if Vu6 - Vu; this is the case, in particular, when u has support around 
a one-dimensional curve, provided its curvature does not vary too much on a 
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scale of the order of e . Therefore, it can be expected that our diffusion will not 
affect smooth one-dimensional objects, and e appears again as a scale parameter 
which will determine the minimal size of the details that one wishes to keep in 
the image. On the other hand, if the signal is noisy, then the directions of Vue 
and Vu will not show any coherence, and A, will act as an isotropic diffusion. 
In ?2 we prove, along with the well-posedness of the initial-boundary value 
problem, the attractivity of piecewise constant states in the case where spatial 
derivatives are replaced by finite differences and the diffusion matrix is only 
computed at time 0. In view of this attractivity property, our method can also 
be discussed from the point of view of quantification. For a description and an 
algorithmic approach of the quantification problem we refer to [5]. We give in 
?3 numerical examples based on test images which illustrate these quantification 
properties of our method; we also give examples of medical images, and one, 
in particular, where it is crucial to detect one-dimensional objects. 

2. THE MATHEMATICAL MODEL 

We are dealing here with 2-dimensional images, but the same tools can be 
used in any dimension. We denote by Q the domain (0, 1) x (0, 1) and by F 
its boundary. Although boundary conditions do not really matter here, we will 
focus for simplicity on homogeneous Dirichlet boundary conditions. Let 4 be 
a smooth cutoff function with support in the ball of radius 1, and e6 a (small) 
positive parameter. Classically we write C'(x) = e-24(x/e). If u E L2(Q), we 
extend u in the whole plane by setting 

U(X { U(X) if x EK nand d(x, F) > 2e, 
0 otherwise, 

and we set ue = u * 4 . For the reaction term, we will deal with functions which 
are of class Cl and satisfy 

f(+1) = O, xf(x) > 0 for x #A 0, 

but the analysis below applies as well to functions having more zeros, a possi- 
bility of practical interest if one wishes to obtain asymptotic states where more 
than two grey levels are extracted. We finally denote by Ae the nonlinear oper- 
ator whose value is the 2 x 2 matrix 

A,(u)ij =iu j' 
I VU, 12 + g2 

where Ol = 0/Ox2 and 02 = -0/lx, . Up to the term e2 in the denominator, 
whose role is to avoid singularities in the derivatives of this matrix, Ae (u) is the 
orthogonal projection onto the direction which is perpendicular to the gradient 
of ue . Our reaction diffusion model is then 

(2.1) 
au 

- le2 div([A,(u)][Vu]) = f(u) in Q, 

(2.2) u(., 0) = uo in Q, 
(2.3) u=0 onF. 

Note that although the solution of the above problem depends on a, we denote it 
by u to simplify the notations. The key ingredients to prove the well-posedness 
of this problem are summarized in the following 
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Lemma 2.1. Let e > 0, u and v in L( (Q). The following assertions hold: 
(i) if u E L (), then A,(u),j E Co(K) for i, j E {1, 2}; 
(ii) there exists a constant C6 > 0 such that 

IIA.(u) - A,(v) IIL- < C8 II U - VIILOO; 
(iii) for X, V E (LOO(Q))2 

([A6(u)]+, -) =(curlu., k)(curlu., vI) 
JIVU,12+ g2 

The notation curl v is used here to denote the vector of components (02v, 
-0iv). The proof of these assertions is left to the reader. Assertions (i) and 
(iii) are consequences of the regularization step involved in the construction of 
A,(u), while assertion (ii) results from simple algebraic calculations. Observe 
in particular that choosing q$ = V gives the positivity of A,(u). With that we 
can prove 

Theorem 2.1. Let U0 E Ho(') and e > 0. The system (2.1)-(2.3) has at least 
one solution in Ho'(Q). If -1 < uo < 1 then -I < u(, t) < 1 for all time 
t > 0. 

Proof. Throughout the following, the parameter e is fixed, and for simplicity 
we will drop it in the notations to avoid confusion with the vanishing parameter 
At, which will be introduced (however A will still denote the usual Laplace 
operator). We will exhibit a solution to (2.1)-(2.3) as a limit of solutions of 
approximate linear problems. Let At > 0 and (un) be the sequence obtained 
by the following implicit time discretization of (2.1)-(2.3): 

(2.4) un+ 1_ -62 Atdiv([A(Un)][Vun+I]) -At2Aun+I = un +Atf(un) in Q, 
(2.5) un+ 10 on F. 

In view of the assertion (iii) of Lemma 2.1 and the coercivity of the Laplacian 
in Ho (2), the above problems are uniformly parabolic in Ho (Q2), and un+I is 
therefore well defined. Moreover, since f(+ 1) = f(-l1) = 0, if Iun < 1 and 
At < 1/sup If'I, then clearly Iun + Atf(un)I < 1. By the maximum principle, 
we thus have Iun+I I < 1 . If we denote by uAt the piecewise linear (with respect 
to time) function such that uAt(&, tn) = un, we conclude that 

uAt is bounded in L' (0, T; L' (Q)). 

To pass to the limit in the reaction term, we need some compactness in L2. This 
results from a bound of un in Ho (Q) that we now derive. By differentiating 
(2.1), if Vn = Vun, we obtain the following system in v: 

(2.6) - rVn+1 _At div([A(un)][Vvn+1]) - At2Avn+i 
= 2n + At[f'(Un)vn + oR(un, n+1 

where R= (Ri), with 

Rj(u, v) = S aj (ZOAkVk ) 

Observe that the maximum principle does not apply directly to (2.6), because R 
is mixing derivatives of order 1 of different components of v. To overcome this 
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difficulty, we observe that if v satisfies Ovi/0xj = Ovj/0xi (which is the case 
because of our definition of v), we can apply the following integration by parts 
(recall that A vanishes in a neighborhood of F, so there is no contribution 
from the boundary): 

J(R(u, v), v)dx OA=k(U) OVi 

i, j, k x xiV O Ajk (W v 

,J ,k~V 

| z Ox2A Vkju) a___ _ a_ 

i,j,k x V ,kjZk 

But exchanging j and k and using again the symmetry of the Jacobian matrix 
of v, along with the symmetry of A, we see that the last piece of the integral 
above is equal to f(R(u, v), v) dx. Therefore, we obtain 

J(R(u, v), v) dx = -2 J E Ox2 Wk j 

Now multiply (2.6) by vn+1 and integrate by parts to get 

(1 - CutIIA(Un)11W2, )IIVn+1III2 () <? IIVn+IIIL2(a)(l + CAt)IIVnIIL2(Q). 

We already have that Un is bounded, which, in view of Lemma 2.1, assertion 
(i), implies that IIA(un) IIw22,-() < C. This finally gives, if At is small enough, 

|| Vn+ 1 |L2(Q2) < ( 1 + Cit)II|v n IIL2(Q2) 

and therefore 

IIVn1IL2(a) < C(T)IIv0IIL2(a) for tn < T. 

In other words, 
uAt is bounded in L' (O, T; Ho'(Q)). 

By means of (2.4) it is also readily seen that 

at is bounded in L??(O, T; H-1(Q)). 

From standard compactness arguments we thus obtain the existence of u in 
L' (O, T; Ho' (Q)) such that, for a subsequence, 

UAt -* u in L2(O, T; L2(Q)). 

This already ensures that f(uAt) -* f(u) in the sense of distributions in [0, T) x 
Q. Next, since all the derivatives of uAt * 4 are bounded, we also get, for 
instance, 

UAt*C-yuc*c inL2(OT;J %4(Q)), 

which implies 
[A(uAt)][VuAt] -* [A(u)][Vu] 

still in the sense of distributions. From this it is not difficult to check that u is 
a solution to the original equation. n 
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Regarding uniqueness, it seems that more smoothness has to be required 
(namely u E H2(Q?)). We feel that this smoothness is not natural in the context 
of image processing, where one has basically to deal with signals which are only 
bounded. For the remainder of this discussion, we prefer to focus on stability 
and asymptotic results. We now give two results illustrating on the one hand the 
possibility of having almost steady piecewise constant states and, on the other 
hand, the attractivity of these solutions. We first show that anisotropic diffu- 
sion is small for piecewise constant u, provided the curvature of the boundary 
separating the domains were u takes constant values is not too large and does 
not change too abruptly. 

Theorem 2.2. Let D be a domain whose boundary OD is of class C3 and y 
a normal parametrization of OD. Assume that D is locally on one side of OD 
and let u be the characteristic function of D. Then we have for e small enough 

[Ac(u)][Vu] = aJOD, 

where a is a bounded vector function defined on OD which satisfies 

(2.7) IIIILO <_ Ce2. 

If u is such that 

11U - UIIWI?(D) + I1U - UlI1W1o(Q-D) < K < 1/4, 

then [A,(u)][VU] = CaJD with 

(2.8) IaIILOO < C8e[ + K]. 

In the above estimates, C is a positive constant depending on OD (namely the 
second- and third-order derivatives of y) and C. 
Proof. For simplicity we give the proof in the case when C is the characteristic 
function of the ball with center 0 and radius 1. Let v and T denote respectively 
the normal (directed outward) and the tangent along OD. We have VU = VJOD 
and thus 

[Ae(U)][Vu] - J+D- 

Let x E OD. We can assume, without restricting generality, that x = 0, that 
at this point the tangent is horizontal and OD is parametrized by the first 
coordinate. So we can write 

ae(x) = f U(y) ?-(x - y) dy = e-2 U(a(Y2), Y2) - U(-a(y2), Y2) dy2, 

where a(hy) = - y2 . The parameter Y2 gives a nonzero contribution to 

the integral only if the points (a(y2), Y2) and (a(-y2), Y2) lie on opposite 
sides of OD, in which case its contribution is 1, that is, if 

y(-a(Y2)) < Y2 < y(a(Yh)). 

But an expansion to the order 3 of y shows that 

Iy(a(Y2)) - y(-a(Y2)) <_ C3 SUp I/Y"I 
whence we get 

(2.9) |u (x) < ?esup Iy"' 
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Next, integrating over Yi yields 

, (x) = e U(Y1i, a(Yl)) - U(Yi, -a(YI) dyl. 

Since D is on one side of OD, the quantity in the integral above has a constant 
sign and an expansion of y to the order 2 shows that its absolute value is larger 
than 1 if IYI I sup Iy"I < X, which implies that 

(2.10) | _ (x) > s 
01-' -6 sup ly"Il 

Combining (2.9) and (2.10) finally gives (2.7). The proof of (2.8) goes along the 
same lines, with the additional observation that, if (a(Y2), Y2) and (-a(y2), Y2) 
are on the same side of OD, then 

IU(a(Y2), Y2) - U(-a(y2), Y2)I < sK, 

which leads to 
U8 (X) ?< 8[K + e SUP I/Y"I] 

As for (2.10), this inequality remains unchanged since, if (Yi, a(yi)) and 
(Yi, -a(yl)) lie on opposite sides of OD, we still have 

IU(yi, -a(yi)) - U(yi, -a(yi))l > 2K > 1/2. 

We point out that the above arguments can be easily modified to deal with 
domains which are locally contained between two curves, no matter how close 
these curves are to each other, provided they are smooth enough. This is an 
important feature in view of selective smoothing which would not affect one- 
dimensional objects. The result of Theorem 2.2 naturally raises the question of 
the behavior of our method in the presence of singularities, for instance, when 
the boundaries of the patches have corners. In this case it can be expected 
that the algorithm will first produce a smoothing of the edge, until its curvature 
reaches an acceptable value, at which time the diffusion will stop working. 

To illustrate further that sufficiently coherent signals are not destroyed by our 
reaction-diffusion process, we will now prove that, at least for a semidiscretized 
and linearized version of our model, piecewise constant states are almost steady- 
state solutions for our model. To simplify, let us restrict our discussion to a 
specific finite element discretization. Let h > 0 and Sh be a uniform triangu- 
lation of Q with triangles of side h. Let xi be the nodes of this triangulation. 
Define X to be the space of continuous functions on Q which vanish on F 
and are linear on each triangle. Finally, let u0 E H01 (Q), let uh be its projection 
on h and uh E h such that for all q E h 

(2.11) dh(u ah2 j([A,(uo)][Vuh], = cif(xi)q(xi), 

(2.12) u h(+, 0) = UV 

A few comments are in order about this new problem. Observe first that the 
singular perturbation parameter e has been replaced by h , which to some extent 
is equivalent since in practice e and h are of the same order (the regularization 
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is done over a few pixels). More important is the fact that we reduce our 
problem to a linear one, by evaluating the diffusion matrix only at the initial 
step. In ?3 we will see that in practice this linearization can be efficient. 

Let D be a polygonal domain of Q which is the union of triangles of ST. 
We denote by N the number of vertices of D and by u the function in ?1 
which is equal to 1 in D and -1 in ?2 - D. Then we can prove 

Theorem 2.3. If uh satisfies Ijuh - UIhwloo(D) + IluO - Ui 00(i-D) ? 1/2, there 
exists a constant C > 0 such that, if cNv"iihF < C, then 

(2.13) lim sup Iuh - UhIL2(Q2 ? CcN4i. 
t-*oo 

ilL2Q a~l'h 

Proof. Let T* = max{t > 0; Iuh - uILoo() < 1/2}, 

Al =inf{f R) ;VE[-l, l], 11-vl<1/2} 

A2 = inf |f(V) |;vE [-1, ], l +vl <1/2} 

and A = min(A I, A2). For t < T* we have 

(uh(X,) - u(x1))(f(uh(x,)) < Ai Uh(X) -U(Xi)12 

so that, setting 0 = e = uh - U in (2.1 1), we obtain 

(2. 14) d jleIIL2(Q) + ah2 ([Ae(uo)][Ve], Ve) + CAIleIIL2(Q) 

< ah2 j ([A(u0)][V u], Ve) dx. 

We now bound the integral in the right-hand side. Let Vh be the union of the 
triangles which intersect OD and V*', the part of Vh consisting of the points 
which are at a distance less than e from one of the vertices of D. Then VU is 
bounded by 2h 1 and clearly vanishes outside Vh . In view of our assumption 
on us - , the argument used in the proof of (2.7) shows that [A,(uh)][VU] 
has support in Vh and satisfies 

[A,(u)J[VUJ < {h inVV 
hein V* - Veh. 

Therefore, we can write 

j([Ae(u5)][Vu], Ve) dx < CK9 f Ve(x)l dx + I f Ve(x)l dx 

< 
C N 

vr| IIVehIL2(Q) <hvl h e IIL2(Q). 

By the positivity of A we then deduce from (2.14) the following inequality: 

d 
lIehIL2(Q) + CAIIeIIL2(Q) < CaN 4/hi, t E [0, T*]. 

By Gronwall's lemma this yields 

hle(t)hIL2(Q) < Ile(O)1IL2(a) exp(-Clt) + CcNVhe(1 -exp(-CAt)), t E [O. T*]. 
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To conclude, it remains to deduce from the inverse inequality lIeIIL- < h-1 le llL2 
that, if for a proper positive constant C, aN =e[h- < C, then T* = +oo. 5 

This result is obviously very incomplete for, unless the triangulation is 
adapted to the particular patterns present in the image, it is very likely that, 
when h -* 0, the number of vertices will increase. However, it illustrates, like 
the estimates proved in Theorem 2.2, how strongly our model contrasts with 
isotropic reaction-diffusion, and it indicates that signals which are constant on 
smooth patches are stable. Moreover, the role of the scale parameter e is to 
select those asymptotic states which are in some sense coherent on a scale of 
the order of e. 

3. NUMERICAL EXPERIMENTS 

We first describe how the nonlinear equation (2.1) has been discretized. The 
cutoff function 4 has been chosen to be the classical hat function (although this 
function has not the smoothness required by Theorem 2.1), and the convolution 
ue is approximated by a midpoint quadrature rule. The divergence and gradient 
involved in the diffusion were approximated by using the following formulas: 

divh(vl , v2) h-l[(vi+, j - vij) + (vi,j+l - vij)] 
grads v h-1(vi,j - viL,1, Vi,1j - Vi,j-,) , 

so that, if A _ Id, we find the usual five-point box scheme for the operator A. 
Moreover, the ellipticity of the second-order continuous operator is preserved 
by this discretization. However, we must observe that it does not seem that any 
discrete maximum principle holds, which requires some care to ensure stability. 
We used an explicit time discretization with a time step ensuring stability for 
the reaction term on the one hand and, on the other hand, limited by the usual 
stability condition related to the case A _ Id for the diffusion. If one wishes to 
quantify the original image over N grey level, and if we set 3g = 2N-I and 

i= -1 + (i - . 5)3g, the reaction function takes the form 

f(x) = -g-2(x- g) x i +gi+ ) (x-gi+,) forx E [gj, g9i+], 

and the time step is At = min(.5c; 2). The resulting scheme can be summarized 
by the formula: 

un+- = max(-1; min(1; Un + ah2At divh([Ah (Un)][VUn]) + Atf(un))). 

3.1. Test images. In all of this section the exact image that we want to re- 
cover consists of a black triangle above a black narrow rectangle (see Figure 3 
on p. 670) on a white background (so the reaction function is chosen to extract 
two grey levels). In a first experiment (top picture in Figure 1) this is the ini- 
tial condition, which ideally should be preserved by our image processing, and 
we measure the distance between the computed solution and this exact solu- 
tion by the L2 norm of the difference. The curves A and B correspond to 
32 x 32 and 64 x 64 images, where e was kept at the same value (5 pixels for 
the first image, 10 pixels for the second). The curve C represents the evolution 
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FIGURE 1. The effect of refinement on the asymptotic state of 
the model, for an exact (top) and perturbed (bottom) initial 
condition 
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FIGURE 2. Isotropic reaction-diffusion and pure nonlinear dif- 
fusion compared to our method for a 64 x 64 image 

of the error for the 64 x 64 image, where e has been reduced to the width of 
5 pixels. The successive improvements confirm the result of Theorem 2.3. In 
a second experiment (bottom picture of Figure 1) the same images have been 
slightly perturbed by replacing 10% of the pixels by random values. In this 
situation, the processed images basically fall into the same neighborhood of 
the desired state as in the previous experiments. In the second test (Figure 2) 
we have compared in the same situation as previously (64 x 64 image with a 
10% noise) our method with, on the one hand an isotropic reaction-diffusion 
equation, and, on the other hand, our model where the reaction is turned off. All 
calculations were done with the same diffusion coefficient a (about 10). At the 
end of the computation for the isotropic reaction-diffusion model, the image is 
almost completely lost. Although the reaction improves the convergence when 
combined with nonlinear diffusion in our model, it seems that the pure nonlinear 
diffusion model has the same kind of asymptotic properties. In the third test we 
applied a more severe alteration of a 128 x 128 image (Figure 3, left picture). 
In this case, 70% of the pixels have been destroyed, and we have represented 
the processed image obtained after 150 iterations and a thresholding dividing 
the image between black and white. The regularization has been done over 14 
pixels in each direction. Since in this case most of the computation is consumed 
in the evaluation of ue, we have computed this term only every 20 iterations. 
As can be seen on the right picture, all the noise has been removed and the 
edges of the patterns have been reasonably preserved. In light of the analysis 
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FIGURE 3. Image processing on a 70% destroyed image 

done in Theorem 2.2. we can interpret the damage at the ends of the rectangle 
by the fact that at these points the curvature varies rapidly. Observe that the 
rectangle is only 7 pixels wide, so that simple regularization over a bandwidth 
of 14 pixels would have greatly affected it. 
3.2. Medical images. We now illustrate the possibilities of our method in 
the context of medical imaging. The first image (top picture in Figure 4) is 
a 256 x 256 "classical" MRI image of the brain (see [2] for an approach via 
dynamical systems and neural networks of the same image). In this image, 
which is actually extracted from a series of slices, one would like to have a 
precise contouring of the tumor which appears as a slightly clearer zone in 
the top-left part of the picture. We have processed this image with the above 
method, using a regularization over only 3 pixels in both directions; this is 
actually possible because the original image is not very noisy. Moreover, the 
computation of the diffusion matrix has only been performed at the first step 
(as for the model analyzed in Theorem 2.3). We used a reaction function which 
has 8 stable zeros (which means that 8 grey levels are selected) and is piecewise 
cubic. The bottom picture in Figure 4 shows the processed image after resealing; 
on this image it is easy to identify precisely the location of the tumor, as well 
as two darker zones around this white region, corresponding to compressed 
areas in the brain. Our last example deals with a more challenging aspect of 
medical imaging. The original image is a 512 x 512 image obtained through an 
angiogram, still in the brain, and the interesting information concerns the vessels 
which trace complicated one-dimensional curves starting from the core (top-left 
picture in Figure 5 on p. 672). We first checked that although the original image 
does not seem very noisy (somehow, the eye is able to follow the vessels far 
away from the core), simple thresholding fails to select these vessels on a black 
and white image. The dots which appear on the top-right picture correspond 
to inhomogeneous tissues which cannot be distinguished from the vessels. Of 
course, one could think that this difficulty results from a value of the threshold 
which has been chosen too small, but taking a bigger value has the effect of 
disconnecting the vessels themselves. The bottom-left picture is a processed 
version of the original image with 4 grey levels in the reaction function and a 
regularization over 7 pixels in each direction. As in the previous example, the 
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FIGURE 4. Image processing with 8 grey levels on a 256 x 256 
MRI image of the brain 
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FIGURE 5. Image processing on a 512 x 512 angiogram. with 
recognition of 1 - D vessels 

diffusion matrix has only been evaluated at the first step. Although this image 
seems better than the original one, we tried to give a less subjective comparison 
critenon and played the same thresholding game as on the top-right picture. It 
appears now that it is possible to keep only the interesting features and remove 
the part of the image corresponding to either brighter or inhomogeneous tissues. 
Although it has not yet been possible to reconnect the vessels far away from the 
core, the processed image shows interesting fine details in the core of the vessels. 

4. CONCLUSION 

We have presented a scalar reaction-diffusion model for image processing 
which is able to provide nontrivial stable asymptotic states. The test images 
show that this model retains the interesting features of isotropic diffusion for 
noise reduction, without leading to a destruction of the edges of the signal. 
Moreover, the fact that one-dimensional smooth coherent signals are not af- 
fected by this kind of processing, predicted by the analysis from the particular 
shape of the diffusion operator, is confirmed on real examples. So far, and for 
simplicity, the reaction function uses uniformly distributed thresholds. Future 
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plans consist in studying the possibility of an interactive choice of these thresh- 
olds. Also, the extension to 3-dimensional images will be considered, as well 
as the coupling between these methods and segmentation methods, which are 
currently used at the medical school in Grenoble. 
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